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DOES ANTIAROMATICITY IMPLY NET DESTABILIZATION?

Jane S. Murray, Jorge M. Seminario and Peter Politzer*

Department of Chemistry
University of New Orleans
New Orleans, LA 70148

ABSTRACT

An analysis is presented of the results of earlier ab initio computational studies of
cyclobutadiene, cyclooctatetraene and 1,4-dihydropyrazine. The first and third of these are
normally categorized as antiaromatic. All three molecules are polyenes, even when the last
two are forced into planar conformations. There is no driving force for extensive x

delocalization, even when it would appear to have been facilitated. Calculated isodesmic

energies show a net destabilization only in the case of cyclobutadiene, which we attribute to
strain and repulsion between the nt electrons of the C=C double bonds. The other two

molecules have negative isodesmic energies, indicative of net stabilizing effects. We

conclude that the concept of antiaromaticity is useful for identifying molecules that resist the
apparent opportunity for extensive n delocalization, but that it does not intrinsically imply

net destabilizaton.
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Introduction

1,3-Cyclobutadiene, benzene and 1,3,5,7-cyclooctatetraene have in common the structural
features that they are monocyclic and they satisfy the formula (CH),. In principle, they could all
be envisioned as conjugated polyenes, 1A - 3A respectively. It is well known, however, that in

[ O

1A 2A 3A

benzene the ©t electrons are completely delocalized and the six C—C bonds are exactly equivalent,
so that the actual structure is 2B. The same might be anticipated in cyclobutadiene and
cyclooctatetraene, as represented by 1B and 3B, but this does not happen; they are indeed

polyenes and are properly depicted by 1A and 3A. (In fact, cyclooctatetraene is not even planar,
but rather has a "tub-like" structure [1].)
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These observations can be rationalized on the basis of simple molecular orbital
considerations, which lead to the generalizations that if a cyclic fully-conjugated planar system has
4n + 2 m electrons, then these will be highly delocalized and the molecule correspondingly
stabilized, whereas if it has 4n & electrons, then extensive delocalization would have destabilizing
consequences and accordingly does not occur (2-6]. The terms "aromatic” and "antiaromatic” are
used to respectively designate these two categories. Benzene is of course aromatic and
cyclobutadiene antiaromatic, as would also be cyclooctatetraene if it were planar.

Antiaromaticity is frequently described as being accompanied by a destabilizing effect; in
the case of cyclobutadiene, for example, this has been reported as being at least 12 -16 kcal/mole
[7]. Itis this "antiaromatic destabilization” that we wish to address in this paper. We will do so in
terms of the three molecules mentioned above (1A, 2B and 3A), plus the nitrogen-containing
system 4. The lone pair electrons in the latter are normally viewed as being conjugated with the =
electrons of the double bonds, making 4 antiaromatic [8,9].
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4
Methods

The structures of 1A, 3A and 4 have been oatimized in earlier work {10,11] at the HF/3-
21G level [12], followed by single point runs to obtain the corresponding MP2/6-31G* energies.
The latter were used to investigate anomalous energetic effects in these molecules by means of the
isodesmic reaction procedure. This is a well-established approach to studying stabilizing and
destabilizing effects in molecules [13,14]. An isodesmic reaction is a hypothetical chemical
process in which the number of bonds of each formal type is the same on both sides of the
equation, but their mutual relationships are changed. For example, eq. (1) is an isodesmic reaction
for 4:

2H,C=CH, + 4H,C—NH, —— H-N_ N-H + 4CH,+2NH; (D
\=/
4

The value of AE for such a reaction reveals any deviations from bond energy additivity, which can
be referred to as anomalous energetic effects. AE < 0 indicates net stabilization in the molecule of
interest; AE > 0 implies destabilization.

In the earlier work [10,11], we used the calculated electrosatic potential V(r) as a probe of
electron delocalization. V(r) is given rigorously by eq. (2):

Z, p(r' )dr’
V(r) = -
©=2g. A e @

Z, is the charge on nucleus A, located at Ry, and p(r) is the electronic density, which we obtain
from the molecular wave function. V(r) is a real physical property, which can be determined
experimentally as well as computationally [15], and is now widely used in interpreting and
predicting molecular interactive behavior [16]. We have computed V(r) for 1A, 3A and 4 at the
HF/STO-5G//HF/3-21G level [10,11].




Results

Table I gives the computed isodesmic energies, some key optimized bond lengths, and the
most negative electrostatic potential values (Vnin) associated with the C=C double bonds in 1A,
3A and 4. We also include these data for the fully planar conformations of 3A and 4, along with
the energies of these latter structures relative to the ground states.

Di .

Table I confirms that 1A, 3A and 4 are polyenes. This can be seen from the C=C bond
lengths and electrostatic potentials, which are all close to the corresponding computed values for
ethylene (1.315 A [14] and -13.1 kcal/mole [17]). Itis noteworthy that this polyene character is
maintained even when 3A and 4 are forced into fully planar conformations, which should promote
7 delocalization; this can be seen by comparing the bond lengths and Vpin for the ground state and
planar forms (Table I). It is clear that there is no driving force for extensive n delocalization in
these molecules, even when it would appear to be facilitated. These examples support the validity
of the 4n rule in identifying systems which seemingly could undergo a high degree of
delocalization but prefer not to do so.

Of the molecules included in Table I, only cyclobutadiene (1A) has a positive isodesmic
energy, indicating the presence of destabilizing effects. This conclusion is in accord with the
observed instability of cyclobutadiene and the difficulty that was experienced in its preparation
[4,5). The structure of cyclobutadiene suggests that it should have a sizable strain energy, and
indeed this has been estimated to be at least 35 kcal/mole [18]. If this is combined with the
“antiaromatic destabilization™ of at least 12 - 16 kcal/mole that has been attributed to cyclobutadiene
(7], then the estimated total destabilizing energy is in good agreement with our AEisydesmic of
+53.0 kcal/mole. (At the HF/3-21G//HF-3-21G level, the isodesmic energy of 1A is 70 kcal/mole
[14], indicating the importance of correlation in this molecule.)

The other molecules in Table 1 have negative isodesmic energies, even when forced into
planar conformations. Thus, whatever anomalous energetic effects may be present in these
molecules, the net result is stabilizing. This may reflect limited electronic delocalization, which in
4 would probably include the nitrogen lone pairs. This interpretation is supported by our findings
for a wide variety of strained and unstrained, saturated and unsaturated molecules [10,19,20].

The examples of 3A and 4 demonstrate that there need not necessarily be a net destabilizing
energy associated with a monocyclic planar fully-conjugated molecule that has 4n & electrons.
When it does appear, an explanation may be available that does not invoke antiaromaticity. For
instance, the large positive AE;sodesmic Of cyclobutadiene may be primarily due to strain plus the




repulsion between the n electrons of the double bonds, which are forced by the molecular
framework to be only one C-C bond length apart [10]. (This may be the reason for this C-C bond
being unusually long, 1.602 A.)

In summary our results confirm the usefulness of the term "antiaromatic” and the 4n rule in
identifying molecules that appear to have the opportunity for extensive cyclic xn-delocalization, but
do not avail themselves of it. However we find that antiaromaticity does not intrinsically imply net
destabilization.
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Table 1. Calculated properties.2

Relative energy,  AEisodesmic Bond Length,  C=C Vnin,
Molecule MP2/6-31G*//  MP2/6-31G*// A HF/STO-5G//
HF/3-21G, HF/3-21G, HF/3-21G,
kcal/mole kcal/mole kcal/mole
1A | | - +53.0 C-C: 1.602 -13.1b
C=C: 1.323
3A 15.1 -27.8 C-C: 1477 -12.3b
(planar) =C: 1.323
3A 0 -42.9 C-C: 1477 .10.5¢ -14.9d
(ground C=C: 1.320
state)
4 / T\ 7.0 -32.6 =C: 1.318 .21.4b -216b
lanar) H—N N—H C-N: 1415 ’ )
(planar) \__/
4 /T } 0 -39.6 C=C: 1317 .10.8,¢ -19.0f
(ground H=N ~H C-N: 1.424
state) \:-_/

aThe data for 1A and 4 are from reference 10; those for 3A are from reference 11.
bAbove and below C=C double bonds.

¢Below C=C double bonds, outside of tub.

dAbove C=C double bonds, within tub.

€Above C=C double bonds, same side of ring as hydrogens.

fBelow C=C double bonds, side of ring away from hydrogens.




